
  

 

Abstract—Electronic medical claims (EMCs) can be used to 

accurately predict the occurrence of a variety of diseases, which 

can contribute to precise medical interventions. While there is a 

growing interest in the application of machine learning (ML) 

techniques to address clinical problems, the use of deep-learning 

in healthcare have just gained attention recently. Deep learning, 

such as deep neural network (DNN), has achieved impressive 

results in the areas of speech recognition, computer vision, and 

natural language processing in recent years. However, deep 

learning is often difficult to comprehend due to the complexities 

in its framework. Furthermore, this method has not yet been 

demonstrated to achieve a better performance comparing to 

other conventional ML algorithms in disease prediction tasks 

using EMCs. In this study, we utilize a large population-based 

EMC database of around 800,000 patients to compare DNN 

with three other ML approaches for predicting 5-year stroke 

occurrence. The result shows that DNN and gradient boosting 

decision tree (GBDT) can result in similarly high prediction 

accuracies that are better compared to logistic regression (LR) 

and support vector machine (SVM) approaches. Meanwhile, 

DNN achieves optimal results by using lesser amounts of patient 

data when comparing to GBDT method. 

I. INTRODUCTION  

Making accurate prediction of disease occurrence can be 
of great clinical value for healthcare professionals. A highly 
effective data-driven predictive algorithm is desired to 
increase the efficiency of disease prevention and improve 
patient outcomes through early detection and treatment. 
Machine learning (ML) techniques are a set of powerful 
algorithms capable of modeling complex and hidden 
relationship between a multitude of clinical variables and the 
desired clinical outcome from data without stringent statistical 
assumptions. Further, the electronic medical claims (EMCs) 
database presents itself as a valuable data source due to its 
large-scaled and longitudinal nature of data collection process 
along with its variety in the recorded patients’ health-related 
information. It is, hence, intuitively appealing to apply ML 
techniques to develop disease prediction from EMCs. 
However, unlike the steady growth in the application of ML 
methods in other industries, the utilization of ML approach in 
the medical records database appears only recently [1,2]. The 
EMCs usually cover a variety of health-care data, and the type 
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of data varies in its structure; additionally, the complexities in 
handling the EMC data also result from its implicit inclusion 
of temporal information. These characteristics of EMCs make 
the systematic utilization of ML techniques challenging. 

Recently, a branch of ML techniques based on deep 
learning approach, such as deep neural network (DNN), has 
achieved impressive and sometimes, breakthrough, results 
across a variety of artificial intelligence tasks. The approach of 
deep learning is inspired by the ability of human brain to 
abstract high-level representations from low-level sensory 
stimuli; these multi-leveled representations can be casted 
mathematically as multi-layered neural networks, and only 
recently, it is being able to be trained via layer-wise 
back-propagation to obtain tractable optimization [3]. These 
techniques are currently the state-of-art in the areas of speech 
recognition, computer vision, and natural language processing 
[4]. In terms of health-care applications, it has also been 
successfully used to perform automatic recognition of diabetic 
retinopathy in a very recent study [5]. As volumes of data 
grow in healthcare systems, such technique has also been 
applied to solve several other health-related problems, such as 
prediction of heart-failure [6] and osteoporosis [7]. Despite 
these works, there remains a resistance to accept deep learning 
widely as a clinical decision support with its inherent 
difficulties in obtaining interpretable analyses due to the 
complexities of the framework. Furthermore, it is also unclear 
whether such a technique do outperform other conventional 
ML algorithms, such as logistic regression (LR) and support 
vector machine (SVM), on prediction tasks using EMCs. 

While there exist a vast amount of ML-based techniques 
across numerous fields and applications in the past decades, 
few limited works, if any, have systematically applied and/or 
analyzed DNN and other conventional ML approaches for 
EMC database in disease prediction tasks. In this study, we 
will explore whether such a large-scaled EMC data routinely 
collected for the purpose of health insurance claims is 
sufficient for deriving predictive analytics in stroke 
occurrence prediction using DNN and other ML methods 
(GBDT, LR, and SVM). This study details the framework for 
ML-based prediction tasks using EMC data, and we 
demonstrate that DNN is indeed capable of obtaining 
promising recognition accuracy on a separated testing dataset 
as compared to SVM and LR. 

II. METHODS  

A. Database and study population 

The dataset for this study is extracted from the National 
Health Insurance Research Database (NHIRD). The National 
Health Insurance program, which was implemented in Taiwan 
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since 1995, covers about 99% of the island’s population. The 
National Health Research Institute (NHRI) has established a 
systemic sampling of patient data resulting in the available 
NHIRD. The database contains de-identified EMC data from 
over 900,000 patients treated in the hospitals and clinics from 
2000 to 2008 across the nation. The details of the NHIRD have 
also been previously described [8,9]. In brief, these random 
samples of patients have been confirmed by the NHRI to be 
representative of the general population in Taiwan. The NHRI 
has further made data available in an anonymous format with 
extra precaution to protect the privacy of individuals. The 
database has already been used for several important 
epidemiological and medical researches [10,11]. Our study is 
approved by the Institutional Review Board of Taichung 
Veterans General Hospital.  

In this work, to explore the feasibility and effectiveness of 
DNN and other ML methods developed for EMCs, we design 
a task to predict the 5-year stroke occurrence using the 
outpatient department database. Patients aged 0 to 99 years are 
identified from the database in 2003. Patients are not eligible 
for enrollment if they had any types of stroke (International 
Classification of Diseases, Tenth Revision, Clinical 
Modification, [ICD-10-CM] code: I60~I69) for the duration of 
2000-2003. We utilize data from the outpatient department 
within past three years before enrollment to generate features 
(Section B). We further remove patients that have inadequate 
numbers of available clinical measurements. Following this 
exclusion criteria, our final dataset includes a total number of 
840,487 patients. In order to develop and evaluate the model, 
these data are further assigned into development (90% patients 
for training sets, and 5% for parameter tuning) and testing 
datasets (5% of patients). The outcome event is defined as any 
ischemic stroke recorded (ICD-10-CM code: I63) in the 
hospital discharge diagnoses in the inpatient database. 
Down-sampling is performed to guarantee an almost identical 
class distribution between stroke and non-stroke cases.  

B. EMC Feature engineering and selection 

While this study focuses on stroke prediction, we establish 
a feature engineering method that is generalizable to derive 
other diseases’ predictive analytics using EMCs. We first 
gather the following measurements from the record of an 
individual patient at the enrollment time: 

 Demographic measurements: Sex and age. 

 Continuous and ordinal measurements: A total of 11 
continuous and ordinal measurements are presented in 
the dataset, including diagnostic fee, treatment fee, 
medicine service fee, insurance fee, self-payment fee, 
total health-service fee, individual medicine fee, total 
medicine fee, total days of prescriptions, total amount 
of prescriptions, and total fee of prescriptions. 

 Categorical measurements: These categorical 
variables cover statuses or diagnoses assigned by 
doctors and/or the insurance bureau. We use 5 
categorical measurements and map them into 221 
binary values.  

 Medication use measurements: A list of relevant 
outpatient medications is classified by the ATC codes 
and mapped into binary values (429 in total). 

TABLE 1.  A TOTAL OF 7,932 FEATURES EXTRACTED 

 

 Disease diagnosis measurements: a list of relevant 
outpatient diagnoses is classified by the ICD-10-CM 
codes and mapped into binary values (914 in total). In 
the NHIRD database, the diagnoses of diseases were 
coded by using ICD-9-CM code. We convert the 
ICD-9-CM code to ICD-10-CM code by using the 
code-converting sheet suggested and provided by the 
National Health Insurance Bureau. 

In order to generate the final feature vector that can capture 
both the relevant clinical measurements and temporal 
information as input to the ML algorithm, we further utilize 
the time stamp of these measurements. In total, we extract 
7,932 features (clinical variables) from the dataset. These 
features can be abstracted as combinations of two dimensions 
derived from the EMCs (Table 1): the measurement 
dimension and the temporal dimension. In this paper, the 
temporal dimension that we use covers 5 time periods (0.25 
year, 0.5 year, 1 year, 2 years, and 3 years). For continuous 
and ordinal measurements, we calculate the mean value and 
the standard deviation over the selected time period. For the 
categorical measurements, the total sum over the selected time 
period is used. In the medication use measurements, we 
compute the total number of specific medication classes 
recorded during these time periods. In the disease diagnosis 
measurements, we use the total number of times that a specific 
diagnoses is made during these time periods.  

We additionally perform feature selection to reduce and 
identify the most discriminative features using GBDT as a 
preprocessing feature selection method. We perform this 
calculation over the training dataset for 18 times (each time 
with around 5% of patients’ data). In the end, we use a total of 
2,007 important attributes out of 7,932. 

C. Prediction Algorithms based on DNN and other ML  

In this study, our aim is to compare DNN with other ML 
algorithms in deriving stroke occurrence prediction using 
EMCs. DNN can automatically learn feature relationships 
computed from the EMCs at multiple levels of abstraction [3]. 
The architecture of our DNN used is composed of three fully 
connected hidden layers. The number of neurons per hidden 
layer is equal to the dimension of input data, and hyperbolic 
tangent is used as the activation function. During the training 
process, the parameters of the DNN are randomly initialized. 
For each batch of training data, parameters of the DNN are 
modified gradually to decrease the cross entropy loss function.  

Measurement Dimension 
Temporal 

Dimension 

No of 

Features 

Demographics: sex and age  2 

Continuous and ordinal: diagnostic 

fee, treatment fee, medicine service 

fee, insurance fee, self-payment fee, 

total health-service fee, individual 

medicine fee, total medicine fee, total 

days of prescriptions, total amount of 

prescriptions, and total fee of 

prescriptions (11 in total)  

In past 0.25 year 

In past 0.5 year 

In past 1 year 

In past 2 years 

In past 3 years 

(5 in total) 

55 mean 

values, 

and 55 

standard 

deviation 

values 

Categorical: 5 measurements map into 

221 binary values 
1,105 

Medication use: 429 in total  2,145 

Disease diagnosis: 914 in total  4,570 
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 TABLE 2.  COMPARISONS OF UAR, SENSITIVITY, SPECIFICITY AND 

PREDICTIVE ACCURACY FOR DNN, GBDT, LA AND SVM MODELS 

Model UAR Sensitivity Specificity Accuracy 

DNN 0.858 0.845 0.871 0.873 

GBDT 0.860 0.856 0.865 0.868 

LR 0.841 0.820 0.864 0.866 

SVM 0.824 0.813 0.837 0.839 

 

The optimization algorithm used to train the network here is 
based on stochastic gradient descent [12]. In order to speed up 
the training process, we apply a simple normalization 
approach by scaling the feature values to a range between 0 
and 1. The DNN is implemented using the Keras (2015, 
GitHub) toolbox. 

In this work, we also utilize other ML-based classifiers, 
such as GBDT, LR and SVM (all implemented in python 2.7 
using the scikit-learn version 0.18.0 packages). GBDT is 
trained using 100 boosted trees and binomial loss function. 
L2-regularization is used with the strength set at 1.0 for LR 
method. For SVM, we use the linear kernel suitable for high 
dimensionality of our feature space. The tuning dataset 
(around 5% of total patients) is used to adjust all the 
hyper-parameters in these algorithms. 

We apply these ML-based methods to predict patients’ 
5-year stroke occurrence based on their EMC-derived features 
in the past 3 years. Aside from the accuracy, we additionally 
report the unweighted average recall (UAR) to be used as a 
measure of performance of these ML algorithms, due to the 
imbalance class distribution (stroke vs. non-stroke) in the 
separated test set. The UAR is defined as: UAR = (A+B)/2 = 
(Sensitivity+ Specificity)/2 

A = No of accurately predicted stroke / No of true stroke  

B = No of accurately predicted non-stroke / No of total 
non-stroke 

D. Subsampling experiments 

To understand the impact on the amounts of training 
information needed for the predictive model, we further 
perform two additional subsampling experiments: 

 Reducing training data amount: To understand the 
effect of reducing the number of patients’ data in 
training set, our training dataset is first divided into 9 
separated parts (each sub-dataset includes around 
80,000 patients’ data). We iteratively add these 
sub-datasets into the training process of ML 
algorithms and examine the performance of theses 
ML models on a separated testing set.  

 Reducing temporal information in the features: To 
understand the effect of reducing temporal related 
information, different time period is used when 
deriving features. In the standard predictive model, 
we use information of EMCs within the past 3 years 
before recruitment to generate the predictive features. 
In this experiment, we reduce the information to only 
past 2 years, followed by 1 year and 0.5 year. A new 
model is trained for each time period and its 
performance is measured on a separated testing set. 

Figure 1. The receiver operating characteristic curve and AUC for the 
predictive performance of DNN and GBDT 

III. RESULTS 

In this study, the development set includes 798,611 
patients (including 756,556 in the training sets and 42,055 in 
the tuning sets). The testing set consists of 41,876 patients. In 
the follow-up 5-year period, 4,726 patients in the development 
set and 218 patients in the testing set had stroke events. A total 
of 7,932 features are generated from the datasets. After feature 
selection with the gradient boosting classifier, a total of 2,007 
features are used in the training of the algorithms. Table 2 
summarizes the overall results. The stroke prediction 
performance of DNN is compared with GBDT, LR and SVM. 
DNN and GBDT show higher UARs, sensitivities, and 
specificities while LR and SVM showed lower ones. DNN 
also has the highest predictive accuracy, followed by the 
GBDT, LR and SVM methods. The DNN and GBDT both 
achieve better classification UAR and accuracies in this study 
setting. These results highlight the importance of ML 
algorithms selection when analyzing EMCs. For a clear view 
of the overall predictive performance of DNN and GBDT, we 
plot the receiver operating characteristic curve (Figure 1). The 
DNN and GBDT algorithms achieve similar area under curves 
(AUCs) of 0.915 (95% confidence interval [CI], 0.900-0.931) 
and 0.918 (95% CI, 0.902-0.934). These findings indicate that 
DNN and GBDT can achieve similar predictive results while 
LR and SVM both show a less effective performance. 

In the first subsampling experiment, we compare DNN 
and other ML methods with different training data amount. 
Multiple predictive models are trained with varying numbers 
of patients included. We aim at to determine whether the size 
of the training dataset would influence the performance of the 
algorithms. These results are obtained by testing these 
predictive models over the testing set. Figure 2 shows that the 
UAR of the model increases as we increase the training data 
amount in DNN and GBDT. The effects on the dataset size 
plateaus at around 320,000 and 560,000 patients for DNN and 
GBDT, respectively. Statistically significant difference (p 
value is 0.001 from McNemar's test) is noted between 
prediction result from DNN and GBDT at the dataset size of 
400,000 patients. Furthermore, we observe that the 
performances of the model seem to be less stable (jumps 
abruptly up and down) as we increase the number of patients 
for models of LR and SVM. Moreover, the modeling power of 
both DNN and GBDT surpass both LR and SVM when 
increasing the number of patients over 240,000 patients. 
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Figure 2. Performance of DNN, GBDT, LR and SVM models with different 
training data amount 

In the second experiment, we want to explore the impact of 
time period included in the feature extraction process on the 
performance of these predictive models. As showed in figure 3, 
we see that by increasing the number of time periods included 
in the feature extraction process (i.e., inclusions of an 
individual’s longer temporal clinical information), the 
performance increases in DNN and other ML models. The 
performances of DNN and GBDT models show a slight 
upward improvement; meanwhile, the performances of LR 
and SVM models yields a relatively greater improvements as 
we increase the time period for training. This result suggests 
the inclusion of longer past history of clinical information may 
help in developing the stroke occurrence predictive model. 

IV. DISCUSSION  

In summary, we demonstrate that it is promising to utilize 
ML-based technique (DNN and others) on a large-scale EMCs 
to predict stroke with high UAR and accuracy. In this study, 
an encouraging AUC of 92% is achieved by both the DNN and 
GBDT algorithm while DNN requires lesser amount of 
training data. This novel approach in developing automated 
system for the prediction of stroke occurrence potentially 
offers several advantages, including consistency of results, 
high accuracy, and rapidly reporting of predictions. In addition, 
because these predictive algorithms can have multiple 
operating points, its sensitivity and specificity can be adjusted 
to match the clinical requirements. Our results also showed 
that performances of DNN and GBDT are superior to that of 
LR and SVM, both in terms of predictive performance as well 
as predictive stability. This difference may result from the 
nature of nonlinear modeling power in both DNN and GBDT 
algorithms. In this work, we demonstrate that DNN can be a 
promising method to model and extract the implicit 
correlations among features from EMCs that can handle 
complex disease prediction tasks. 

V. CONCLUSIONS  

In this evaluation of applying ML-techniques by using 
EMCs from outpatient department, algorithms based on DNN 
and GBDT can achieve high UAR and AUC for prediction of 
future stroke occurrence. Using longer time periods of EMCs 
data can help improve predictive power. Meanwhile, DNN 
can achieve the best performance using smaller training 
dataset compared with the GBDT method. Further research is 
necessary to determine the feasibility of applying DNN in the 

Figure 3. Performance of DNN, GBDT, LR and SVM models with different 
temporal information in the features 

clinical setting and to determine whether the use of DNN 
could lead to improved clinical care and patients’ outcomes – 
inspiring the use of appropriate algorithms in deriving 
transformative clinical informatics and bringing an era of 
ML-based decision support in health-care service. 
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